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Abstract. We briefly present a nonlinear method for the prediction of vegetation states from Normalized 

Difference Vegetation Index data, and its performance at four study sites in a semi-arid region (Gourma, Mali). 

Based on 25 years of NDVI used in this study, this approach leads to a mean prediction error of approximately 

20% (resp. 40%) RMS over a horizon of two weeks (resp. 4 weeks) and a spatial resolution of 24x24 km
2
. By 

construction, the acquisition of new NDVI observations will improve these performances by allowing a finer and 

more complete reconstruction (including rare events) of the multi-dimensional probability density function of the 

vegetation states. 
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1. Introduction 

In semi-arid regions, particularly in the Sahel, the intensity and distribution of precipitation 

(Frappart et al., 2009) determines the primary production of vegetation. Livestock uses natural 

pastures. Productivity of rainfed agriculture also depends strongly on the spatial and temporal 

distribution of precipitations (Herrmann et al., 2005). The forecast of rain, but in fact more 

directly the forecast of primary production with a sufficient anticipation (Maselli et al., 1992; 

Balaghi et al., 2008) could condition strategies of transhumance routes or the choice of crop 

or crop rotation of the populations involved in these survival or productive activities. 

Two approaches attempt to produce assessment or forecasting of the vegetation cycles: a) the 

models, relying on data (including observations from space: satellite imagery and radar 

systems) and on sub-models of vegetation dynamics and radiative transfer, that propose a 

representation of the processes involved and of their interactions so as to produce all the 

vegetation state variables (biomass, leaf area index, etc.; e. g. Jarlan et al., 2003, 2008); b) the 

approaches, like in this study, based on past chronic of data (here the vegetation index NDVI) 

and on the observed 15-day to inter-annual variations of the signal, that attempt to infer the 

future state of the vegetation over a more or less distant time-horizon. 

However, both approaches face the intrinsic limits of predictability of the vegetation cycle 

that some analysis, combining the deterministic (dynamical system; e. g. Abarbanel, 1996) 

and stochastic (multivariate probability densities and fractal geometry, e. g. Diks, 1999) 
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paradigms, allows to quantify in the form of horizons of predictability. Then remains, 

according to the prediction algorithm used, to determine the effective predictability (the upper 

bound being set by the intrinsic predictability) of the vegetation cycle. 

After a brief description of the data and data pre-processing in section 2, the theoretical 

background of the forecasting approach is described in section 3, as is a description of the 

methodology used to estimate the horizon of effective predictability, HE. The results are 

presented and discussed in section 4 followed by a conclusion in section 5. 

 

2. Normalized Difference Vegetation Index Data 

Based on the radiometric data from the AVHRR (Advanced Very High Resolution 

Radiometer) sensor onboard NOAA (National Oceanic Atmospheric Administration) 

satellites 7, 9, 11, 14, 16 and 17, the NDVI product is produced by the Global Inventory 

Modelling and Mapping Study (GIMMS) of the Global Land Cover Facility (GLCF, 

www.landcover.org) (Tucker et al., 2004; 2005; Pinzon et al. 2005). The data used here cover 

the period spanning from 1982 to 2006. Its spatial resolution is of 8×8 km
2
 which results from 

the subsampling of initial 1.2 km² pixel data (Justice et al., 1989; James & Kalluri, 1994). To 

reduce atmospheric interference and observation angle effects on the signal, the data are 15-

day composites selecting the maximum NDVI value for each pixel over fifteen days (Holben, 

1986). Corrections account for sensor degradation over time as well as for the geometric 

effects of the view and atmospheric aerosols resulting from eruptions. The area of study is 

shown on Figure 1.  

 

 

Figure 1: Location of the four 

stations (1, 12, 17, 25) in the study 

area centred on the Agoufou site of 

the AMMA program (15.3°N, 

1.5°W; see Mougin et al., 2009) in 

the Gourma region. Before 

analysing the time series, a pre-

processing has been applied to the 

data. A precise geo-referencing of 

the image was carefully performed 

based on clearly identifiable 

reference points. The signal of the 

four studied sites was then 

aggregated by averaging the 9 

closer pixels around the centred 

one including the studied site, 

leading to a new 24×24 km
2
 

aggregated pixel. 

 

A smoothing was also applied in order to reduce the additive noise. An estimate of this noise 

level is provided in Table 1. The resulting data have been resampled with a sampling period 

of 0.25 month. As will be seen later, the horizon of effective predictability (see Sec. 4) is 

similar to the values in the range [0.23-0.67] months obtained at similar scales, say 16×16 

km
2
 and 32×32 km

2
, by Mangiarotti et al. (2010; 2012). 

 

 



Table 1: Sites numbers and coordinates, basic statistics of the aggregated time series (min, 

max, mean and standard deviation), time delay τ obtained using the first minimum of the AMI 

function, additive noise (in % of the original variance of the signal) removed by aggregating 

and filtering the analysed signal and horizon of effective predictability.  

Site 

# 

 Latitude 

(°N) 

Longitude 

(°W) 

min max mean std Time 

delay τ 

(month) 

% 

noise 

HE 

(month) 

1  16.76 1.89 0.12 0.45 0.25 0.05 4.25 7.3 0.26 

12  15.97 1.28 0.12 0.67 0.31 0.08 3.75 3.1 0.29 

17  15.34 1.48 0.14 0.68 0.32 0.09 3.75 7.1 0.27 

25  15.00 1.54 0.09 0.89 0.36 0.13 4.25 2.0 0.31 

 

3. Nonlinear Data Analysis 

NDVI time series of the four study sites are reproduced in Figure 2. We see in particular an 

increase in the variance of the signal – dominated by an annual cycle – along the North (site 

1) - South (site 25) gradient. The low primary productivity related to droughts is especially 

marked during the period 1985-1988 in the Gourma (Heumann et al., 2007). In contrast some 

years such as 1994 or 1999 exhibit a relatively high primary production. 

 
Figure 2: Time series of normalized difference vegetation index measured from satellite for 

sites 1 (top panel), 12 (second panel), 17 (third panel) and 25 (bottom panel). 

 

However, our purpose here is not to conduct such analysis, but to provide a tool for 

forecasting NDVI values which main steps of data processing are briefly described below. 

Note that we here do not discuss the algorithms used in the data processing but we refer to the 

a few useful references. 

3.1 Reconstruction 

The dependent variables describing the state of a dynamical system evolve on an attractor that 

occupies a small part of the volume of phase space. Takens theorem (1981) shows that from 



the knowledge of one of the variables x(t), it is possible to reconstruct in a pseudo phase space 

an attractor diffeomorphic to the original attractor (that involves all the system state 

variables). The existence of this diffeomorphism ensures that various geometric and statistical 

properties (invariants) of the system dynamics can be inferred or quantified through the 

analysis of this single data time series. 

 
Figure 3: 3D reconstruction of the vegetation cycle attractors from NDVI 

data time series at the study sites 1, 12, 17 and 25 (see Fig. 1). 

 

For that purpose we built from the time series x(t) the vector of lagged variables 

 ))1((),...,(),(   EDtxtxtx  which each component is one coordinate of a point in the 

pseudo-space of embedding dimension ED . The time delay  can be estimated from the 

autocorrelation function of the time series, but in the presence of strong nonlinearities using 

the first minimum of the average mutual information function is preferable (Fraser and 

Swinney, 1986). Various algorithms also allow determining the embedding dimension ED  (e. 

g. Kennel and Abarbanel, 2002; Letellier et al., 2008). Figure 3 shows the portraits of the 

vegetation cycle reconstructed at each study site from the time series of NDVI with an 

embedding dimension 3ED , the used time delays being given in Table 1. 

3.2 Forecasting 

The attractor is the fractal support of the probability density function (PDF) of the states of 

the observed system. The approach used for the prediction is the following: we choose a date 

jt from which we want to predict the state of the system at time ht j  .  

To time jt  corresponds a point on the reconstructed attractor. We then perform a selection of 

Kk ..1  neighboring points  ))1((),...,(),(   Ekkk Dtxtxtx  on the reconstructed 

trajectory. Prediction of the state at htk   is made by weighting the K states of the 

neighboring points propagated along the attractor, says the 

points  ))1((),...,(),(   Ekkk Dhtxhtxhtx . Figure 4 gives a geometric 

representation of this method. Locally, the directions along which the observed segments of 

trajectories are converging (resp. diverging) are tangent to the stable (resp. unstable) 

manifolds on which the predictability of system states increases (resp. decreases). 



 

 

 

Figure 4: Forecasting 

approach based on an 

empirical algorithm that 

identifies analogous 

vegetation states already 

visited in the embedding 

space and use their 

corresponding trajectory to 

predict statistically the 

future of the trajectory.  
 

 

3.3 Effective Predictability 

In the reconstruction process, the probability density function (PDF) of an additive noise data 

is convolved with the PDF of the "signal" associated with the evolution of the system state 

variables. Thus an observation error can induce a perturbation of the system along a direction 

tangent to a stable (resp. unstable) manifold of the attractor, increasing (resp. decreasing) the 

performance of the prediction with respect to its intrinsic predictability. Using only empirical 

data, it is this effective predictability (taking into account the data errors, filtering applied to 

reduce them, the characteristics of the signal sampling, etc.; Yu et al., 2000) that we estimate 

here. Statistics for the predictive skill are based on the forecasting error  he j , which is the 

forecasting error at time ht j   when forecasting from time jt , with h being the horizon of 

prediction. The forecasting error is defined as: 

    hjjj xhxhe  ˆ          (1) 

where hjx   represents the data at time ht j  , and  hx j
ˆ  is the forecast from jt  to ht j  . The 

% of error averaged along the attractor  hp  is defined as follows: 

   22 /)(100 xe hhp          (2) 

where x  is the standard deviation of the original data time series, and  he  is defined as 

    2/1
21 )(

N

j je heNh        (3) 

where N is the number of data. Note that in practice, the systematic error 

   
N

j

N

j j heNhe 1  is very low (   310he ). 

 

4. Forecasting Error and Predictability of the Vegetation Cycle 

The forecasting error and predictability of the observed vegetation cycle are dependent on the 

scale of resolution of the NDVI data, on the embedding dimension, and on the chosen horizon 

for prediction as we shall see here below. 

4.1 Scale dependence of the forecasting error 

We have shown elsewhere (Mangiarotti et al., 2010, 2012) that the predictability of a time 

series of NDVI is related to the spatial resolution of the data. Indeed when the data are 

aggregated over a large spatial area, the observed cycle looks like a periodic signal which is 

associated with high predictability (at the expense of spatial resolution). On the contrary, the 



use of non-averaged data time series leads to a lower predictability of the vegetation cycle but 

with a higher spatial resolution of 8x8 km
2
. The intermediate scale – we use here – offers the 

good compromise between good predictability and good spatial resolution of the NDVI. 

The analysis of the forecasting error as a function of time (period 1982-2006) and of the 

prediction horizon h exhibits strong intra-annual heterogeneity with in average a low 

predictability (larger error) during rainy seasons and a high predictability (lower errors due to 

less vegetation) in the dry season. Large inter-annual variability of the forecasting error is also 

observed with positive errors corresponding to low rainfall years and negative errors 

corresponding to high rainfall years. These results highlight the limits of the prediction 

method that relies on past data (and observed events) but also its capacity to mechanically 

improve with the addition of new data. 

4.2 Model dimension and forecast accuracy 

The embedding dimension ED  of a white noise is infinite. Therefore the additional noise in 

the data tends to increase the value of ED  beyond the need for reconstruction of the attractor 

of the (noise free) vegetation cycle. Figure 5 shows that the longer is the prediction horizon 

(higher values of h), the higher is the embedding dimension that minimizes the prediction 

error. 

 
Figure 5: Optimal embedding dimensions as a function of horizon of prediction h (in month): 

dimensions for which the minimum error is obtained (+/- 1%). 

However a dimension ED between 4 and 6 covers a wide range of prediction horizon with an 

acceptable error along the North-South gradient sites of Gourma. 

4.3 Horizon of effective predictability 

We here define the horizon of predictability HE as the horizon for which the forecasting error 

doubles, assuming an exponential error growth rate. In practice, this parameter is computed 

from the ratio of the increasing error between decades 1 and 2 (as the level of noise 

corresponding to h = 0 is unknown) as follows: 

  1
)1(/)2(log()2log(


 ppHE        (4) 

where the % of error p(h) is defined in eq. 2. Figure 6 shows the prediction error (in RMS and 

in %) as a function of the prediction horizon for each site. When going from the quasi-arid 

North to the semi-arid South, the RMS error increases and the error relative to the variance of 

the signal decreases. The values of HE for each site are between 0.26 and 0.31 months (see 

Tab. 1). Now, if we think in terms of error in NDVI unit, the prediction can be useful for a 

longer time horizon. For example if the acceptable level of error is 0.05 NDVI unit, the 

horizon is in average about 2 months in the North of Gourma to 2 weeks in the South.  



 
Figure 6: The forecasting RMS error (left panel) and the % relative forecasting error (right 

panel), both corresponding to the optimal embedding dimension with a level of confidence of 

75%, as a function of the horizon of prediction h (10
0
= 1 month) for sites 1 (dashed magenta 

line), 12 (light green line), 17 (dotted black line) and 25 (dark red line). 
 

5. Conclusion 

In average the prediction method presented here can anticipate by two weeks the vegetation 

conditions with an RMS error of ~20% and a spatial resolution of 24x24 km
2
. This error 

exhibits intra-annual and inter-annual oscillations, the exceptionally dry or wet years being 

less well anticipated because of the rarity of their occurrence, particularly with regard to the 

short series of available NDVI. However, the performance of the prediction method increases 

with the acquisition of new data, diversifying the observed states of the system and increasing 

the density of the empirically reconstructed attractor of the vegetation cycle. In addition, the 

predicted values of NDVI can be used in a data assimilation scheme in a model of vegetation 

dynamics to produce in advance the likely values of other state variables of vegetation (like 

biomass, leaf area index, etc.). 
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